Part Number Hot Search : 
FUSB3301 3A033 SS085M22 S593T08 ND3038B2 OP213ES JHM10 TIP14
Product Description
Full Text Search
 

To Download ACE70325AN Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 
ACE703
Technology Description
White LED PFM Step-Up DC-DC Converter
The ACE703 is a PFM step-up DC-DC converter specifically designed to drive white LEDs with a constant current. It can deliver stable constant output current from 0mA to 500mA by adjusting the external resistor. The ACE703 can drive one or more LEDs in parallel connection, also it can drive two in series, several in parallel connection from one or two battery cells. With overvoltage limit protection circuit interiorly, the chip and the external circuits will be safe even if the load is not connected. The device also can deliver steady constant output voltage from 2.5V to 6.0V by adjusting the external resistor. The ACE703 integrates stable reference circuits and it uses trimming technology in the process, so it can afford high precision and low temperature-drift coefficient output current or output voltage. The ACE703 devices are available in SOT-89-5 package.
Features
* * * * * * * * *
Low start-up voltage (when the output current is 1mA)--------------------------0.8V The converter can output constant voltage from 2.5V to 6.0V or it can output constant current from 0 to 500mA by adjusting the external resistor. Output current accuracy -----------10 Low temperature-drift coefficient of the output current------------------100ppm/ Only four external components are necessary: an inductor, a Schottky diode, an output filter capacitor and a resistor. High conversion efficiency (When Vin=2.5V, for 1W LED)----------80
Application
Power source for white LED Supply constant current Power source for a single or dual-cell battery-powered equipments
Absolute Maximum Ratings
Parameter Input supply voltage LX pin voltage CE pin voltage IFB pin voltage Lx pin output current Power Dissipation PD@T=25 OC SOT-89-5 Junction temperature Storage temperature Operating free-air temperature Symbol Max Unit -0.3~10 V -0.3 ~ Vout+0.3 V -0.3 ~ Vout+0.3 V -0.3 ~ Vout+0.3 V 1.5 A 0.5 150 - 40 to 125 -20 ~ 85 W
O O
C C O C
VER 1.2
1

Technology Packaging Type
SOT-89-5
5 4
ACE703
White LED PFM Step-Up DC-DC Converter
1
2
3
Pin SOT-89-5 Function IFB 1 Current feedback pin VOUT 2 Output pin, power supply for internal circuits CE 3 Chip enable pin (active high) LX 4 Switching pin (Nch open drain) GND 5 Ground pin
Ordering information
Selection Guide ACE703 XX XX + H Halogen - free Pb - free AN : SOT-89-5 Feedback Voltage 10...100mV / 20...200mV / 25...250 mV / 30...300 mV / 35...350 mV / 40...400 mV
VER 1.2
2

Technology Block Diagram
ACE703
White LED PFM Step-Up DC-DC Converter
ACE703
Recommended Work Conditions
Item Min Nom Max Unit Input Voltage Range 0.8 Vout V Inductor 10 22 100 H Input capacitor 0 22 F Output capacitor 47 100 220 F Compensation capacitor 10 22 47 F Operating junction temperature -20 85
*Suggestion: Tantalum capacitor is recommended to reduce the ripple of the output voltage
VER 1.2
3

Technology Electrical Characteristics
ACE703
White LED PFM Step-Up DC-DC Converter
(Vin2.5V VCE=Vout3.3VR33TA=25C, unless otherwise noted.)
Symbol
Item
Test conditions
VIFB
Feedback voltage
Iout=100mA
Reference data Min Typ. Max 80 100 120 180 200 220 230 250 270 280 300 320 330 350 370 380 400 420 0.8 0.6 0.7 20 100 700 1 < 0.1 300 70 0.6 350 75 80 0.9 0.3 500 0.5 400 80 30 150 0.9
Unit
mV
Vstart Vhold IDD2*5 Inoload*6 ILX ILXleak Ileak Fosc Maxdty VCEH VCEL IOM
Note:
Start-up voltage Hold-on voltage Quiescent current drawn from power source Current with no load LX switching current LX leakage current Stand-by current Oscillator frequency Oscillator duty cycle Efficiency CE "H" threshold voltage CE "L" threshold voltage Maximum output current
Iout=1mA Vin02V Iout=1mA Vin20V LX hung in air, VCE=VIFB= Vout=3.3V, Vin=2.5V OUT pin and IFB pin without any load, VIFB=0 Vlx=0.4VVIFB=0 Vout=Vlx=VIFB=6V, Vout=3.3V, VCE=0, LXIFB hung in air VIFB=0 OnVlx "L"side Iout=300mA VCE02V VCE20V VIFB=0Vout3.3V
V V uA uA mA uA uA kHZ V V mA
0.6
1.Diode:schottky type, such as:1N5817,1N5819,1N5822 2.Inductor:22uH(R<0.5) 3.Capacitor:100uF (Tantalum type) 4.Compensation capacitor:22uF (Tantalum type) 5.IDD2 is quiescent current drawn from power source, It is the minimum current of the chip without any dynamic current 6.Ino load is the current with no load in constant current application, it's also the current consumed by the converter itself, including the chip and external circuits, when Vin=2.5V,Vout=VOM
VER 1.2
4

Technology Typical Application
(1) Constant output current application
Vin L 27uH LX ACE703 Power Cin 47uF CE GND IFB OUT D 1N5819
ACE703
White LED PFM Step-Up DC-DC Converter
Iout
White LED
C1 22uF Tan
Cout 100uF Tan
Rc
(A) Drive only one white LED
ACE703
(B) Drive two white-LED in series and several in parallel connection (2) Constant output voltage application
ACE703
VER 1.2
5

Technology Detailed description
ACE703
White LED PFM Step-Up DC-DC Converter
The ACE703 series are boost structure, voltage-type pulse-frequency modulation (PFM) step-up DC-DC converter. It can deliver constant current or constant voltage. In constant current application, only five external components are necessary to supply output current from 0 to 500mA:an inductor, an output filter capacitor, a shottky diode, a compensation capacitor and a resistor which adjusts the output current. In constant voltage application, to deliver adjustable and low noise output voltage from 2.5V to 6.0V, only six external components are necessary as well: an inductor, a output filter capacitor, a shottky diode, a compensation capacitor and two resistors for output voltage detect. The ACE703 device consists of resistors for output voltage detection and trimming, a start-up voltage circuit, an oscillator, a reference circuit, a PFM control circuit, a switch protection circuit, a voltage limit protection circuit and a driver transistor. How to determine Rc in constant current application condition We define output current is IOUT then Rc can be determined by Rc=VIFB/IOUT For example, if we need Iout=100mA,and we choose the chip of VIFB=200mV,thus Rc=200mV/100mA=2 How to determine R1,R2 in constant voltage application We define output voltage is Vout, then R1/R2=VOUT/VIFB-1,R2 is in the range of 1K~100K.If we need Vout =3.3V,and we choose the ACE703 of VIFB=400mV and select R2=4K,thus R1=29K. In constant voltage application, we suggest using the high VIFB type ACE703,because there is voltage ripple in existence on feedback voltage. When VIFB is high, the infection of the ripple is less than that of low VIFB type, so the output is more stable. The PFM control circuit is the core of the ACE703 IC. This block controls power switch on/off duty cycle to stabilize output voltage by calculating results of other blocks which sense input voltage, output voltage, output current and load conditions. In PFM modulation system, the frequency and pulse width is fixed. The duty cycle is adjusted by skipping pulses, so that switch on-time is changed based on the conditions such as input voltage, output current and load. The oscillate block inside ACE703 provides fixed frequency and pulse width wave. High-gain differential error amplifier guarantees stable output voltage at difference input voltage and load. In order to reduce ripple and noise, the error amplifier is designed with high bandwidth. Though at very low load condition, the quiescent current of chip do affect efficiency certainly. The four main energy loss of Boost structure DC-DC converter in full load are the ESR of inductor, the voltage of Schottky diode, on resistor of internal N-channel MOSFET and its driver. In order to improve the efficiency, ACE703 integrates low on-resistor N-channel MOSFET and well designed driver circuits. The switch energy loss is limited at very low level.
VER 1.2
6

Technology Selection of the external components
ACE703
White LED PFM Step-Up DC-DC Converter
Thus it can be seen, the inductor and shottky diode affect the conversion efficiency greatly. The inductor and the capacitor also have great influence on the output voltage ripple of the converter. So it is necessary to choose a suitable inductor, a capacitor and a right shottky diode, to obtain high efficiency, low ripple and low noise. Before discussion, we define: DVOUT-VIN/VOUT (1) Inductor Selection Above all, we should define the minimum value of the inductor that can ensure the boost DC-DC to operate in the continuous current-mode condition.
L min
D (1 - D ) 2 RL 2f
The above expression is got under conditions of continuous current mode, neglect Schottky diode's voltage, ESR of both inductor and capacitor. The actual value is greater that it. If inductor's value is less than Lminthe efficiency of DC-DC converter will drop greatly, and the DC-DC circuit will not be stable. Secondly, consider the ripple of the output voltage,
I =
D * Vin Lf
Vin DVin + 2 (1 - D ) RL 2 Lf
Im ax =
If inductor value is too small, the current ripple through it will be great. Then the current through diode and power switch will be great. Because the power switch on chip is not ideal switch, the energy of switch will improve. he efficiency will fall. Thirdly, in general, smaller inductor values supply more output current while larger values start up with lower input voltage and acquire high efficiency. An inductor value of 3uH to 1mH works well in most applications. If DC-DC converter delivers large output current (for example: output current is great than 50mA),large inductor value is recommended in order to improve efficiency. If DC-DC must output very large current at low input supply voltage, small inductor value is recommended. The ESR of inductor will affect efficiency greatly. Suppose ESR value of inductor is Rl, Rload is load resistor, then the energy can be calculated by following expression:

rL Rload (1 - D) 2
For example: input 1.5V,output is 3.0V,Rload=20,rL=0.5,The energy loss is 10%. Consider all above, inductor value of 47uH.ESR<0.5 is recommended in most applications. Large value is recommended in high efficiency applications and smaller value is recommended.
VER 1.2
7

Technology
ACE703
White LED PFM Step-Up DC-DC Converter
(2) Capacitor Selection Ignore ESR of capacitor, the ripple of output voltage is:
r=
Vout D = Vout Rload Cf
So large value capacitor is needed to reduce ripple. But too large capacitor value will slow down system reaction and cost will improve. So 100uF capacitor is recommended. Larger capacitor value will be used in large output current system. If output current is small (<10mA), small value is needed. Consider ESR of capacitor, ripple will increase:
r' = r +
Im ax * RESR Vout
When current is large, ripple caused by ESR will be main factor. It may be greater than 100mV.The ESR will affects efficiency and increase energy loss. So low-ESR capacitor (for example: tantalum capacitor) is recommend or connect two or more filter capacitors in parallel. (3) Diode Selection Rectifier diode will affects efficiency greatlyThough a common diode (such as 1N4148) will work well for light load, it will reduce about 5%~10% efficiency for heavy load, For optimum performance, a Schottky diode (such as 1N5817.1N5819.1N5822) is recommended. (4) Input Capacitor If supply voltage is stable, the DC-DC circuit can output low ripple, low noise and stable voltage without input capacitor. If voltage source is far away from DC-DC circuit, input capacitor value greater than 10uF is recommended. (5) Resistor R1.R2 for output voltage detect In constant current application,R1 and R2 can be selected by following expression:
Vout R1 = +1 VIFB R2
For example, when VIFB=400mV,Vout=3.3V. If R2=4K,then R1= Vout =29K;if R2=40K,then R1=290 K.
(
VIFB
- 1) x R 2
(6) Selection of L.C and compensation capacitor C1 When the load current is largeeg: Iout=100mA,the output voltage ripple will increase:
Vout
L2 I L + Vout 2 - Vout C
As we can see, When output current is large, the maximum current of the inductor IL will increase, thus the ripple of the output voltage will increase. To decrease the ripple, there are two ways:
VER 1.2
8

Technology
ACE703
White LED PFM Step-Up DC-DC Converter
Firstly, select the appropriate value of L.C. It require the value of L*C be not too large, and the value of L/C be small. For example, select L=22uH,C=100uF;or L=10uH,C=47uF;etc. If select L/C>such as L=100uH,C=47uF,it is improper in large currentlarger than 100mA application. Secondly, add a compensation capacitor C1 to reduce the ripple. However, the value of the compensation capacitor is different between constant current application and constant voltage mode.C1 and the resistor parallel connected with it will generate a pole, thus, it can compensate the syntonic frequency made by L.C. In constant voltage mode, if the resistor parallel connected with C1 is large,(eg: R1=290K) then =R1 C1 is large, therefore, when C10.1uF,the ripple can be decreased greatly. But in constant current mode, the resistor parallel connected with C1 is just the equivalent resistor of the white-LED, about 1.Then,to maintain larger require larger compensation capacitor, normally between 10uF to 47uF.Many experiments have proved, when L=22uH,Cout=100uF,C1=22uF,the ripple of the output voltage, the output current, and the feedback voltage is smallest, and the characteristic of the constant current is excellent, even the efficiency is highest.
Test circuits
(1) Feedback voltage test circuit
ACE703
(2) Start-up voltage test circuitIload=1mA
ACE703
VER 1.2
9

Technology
(3) Hold-on voltage test circuitIload=1mA
ACE703
White LED PFM Step-Up DC-DC Converter
ACE703
(4) Quiescent current test circuit
ACE703
(5) Oscillator frequency and duty cycle test circuit
ACE703
VER 1.2
10

Technology
(6) LX switching current test circuit
ACE703
White LED PFM Step-Up DC-DC Converter
ACE703
(7) LX leakage current test circuit
ACE703
(8) CE"Hvoltage test circuit
ACE703
VER 1.2
11

Technology
(9) CE"Lvoltage test circuit
ACE703
White LED PFM Step-Up DC-DC Converter
ACE703
(10) Maximum output voltage (with no load) test circuit
ACE703
VER 1.2
12

Technology Typical Characteristic
ACE703
White LED PFM Step-Up DC-DC Converter
(Recommended operating conditions: Cin=47uF, Cout=22uF, Cout=100uF,L=22uH Topt=25,unless otherwise noted)
1. Output Voltage VS. Input Voltage
ACE70320AN+ Output Current VS. Input Voltage
2. Efficiency VS. Input Voltage
ACE70320AN+ Efficiency VS. Input Voltage (Iout=100mA)
Input Voltage (V)
Input Voltage (V)
3. Efficiency VS. Input Voltage
ACE70320AN+ Efficiency VS. Input Voltage (Iout=200mA)
4. Efficiency VS. Input Voltage
ACE70320AN+ Efficiency VS. Input Voltage (Iout=300mA)
Input Voltage (V)
Input Voltage (V)
5. Ripple Voltage VS. Input Voltage
ACE70320AN+ Ripple Voltage VS. input Voltage(Iout=100mA)
6. Ripple Voltage VS. Input Voltage
ACE70320AN+ Ripple Voltage VS. input Voltage(Iout=200mA)
Input Voltage (V)
Input Voltage (V)
VER 1.2
13

Technology
7. Ripple Voltage VS. Input Voltage
ACE70320AN+ Ripple Voltage VS. input Voltage(Iout=300mA)
ACE703
White LED PFM Step-Up DC-DC Converter
Input Voltage (V)
VER 1.2
14

Technology Packing Information
SOT-89-5
ACE703
White LED PFM Step-Up DC-DC Converter
VER 1.2
15

Technology
ACE703
White LED PFM Step-Up DC-DC Converter
Notes ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
ACE Technology Co., LTD. http://www.ace-ele.com/
VER 1.2
16


▲Up To Search▲   

 
Price & Availability of ACE70325AN

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X